

T039

Wednesday, 22/11/2017 08:30 - 11:30 AM WORKFORCE DEVELOPMENT AUTHORITY

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2017, TECHNICAL AND PROFESSIONAL STUDIES

EXAM TITLE: MATHEMATICS A

OPTIONS: Computer Science (CSC) Computer Science and Management (CSM)

DURATION: 3 hours

INSTRUCTIONS:

The paper is composed of **the following Sections**:

Section I: Sixteen (16) compulsory questions.	55 marks
Section II: Attempt any three (3) out of five questions.	45 marks

Note:

Every candidate is required to carefully comply with the above instructions. Penalty measures will be applied on their strict consideration.

Sec	tion I. Sixteen (16) Compulsory questions	55 marks
01.	If $\vec{a} = 7 \vec{i} + 8\vec{j}$ and $\vec{c} = 5\vec{i} - 2\vec{j}$	
	Find the scalar product \vec{a} . \vec{c}	2 marks
02.	Solve $2log_b(x) = log_b(4) + log_b(x - 1)$.	3 marks
	Find the distance between parallel planes:	
	10X - 12Y + 5Z - 8 = 0 and $10X - 12Y = 5Z + 4$	
	Q(1,1,2) is a point in the first plane.	2 marks
04.	Find the complex number z such that $5iz + \overline{z} + 16 = 8i$	
	Give your answer in the form a + bi, where a and b are real	numbers.
		5 marks
05.	Find the equation of the plane containing the three points	
	(1,2,3),(2,0,4) and (3,3,1), (2,0,4) and (3,3,1)	3 marks
06.	Use de Moivre's theorem to show that	
	$\cos 4\theta = \cos^4\theta - 6\cos^2\theta \sin^2\theta + \sin^4\theta$	5 marks
07.	Find∫ sin ⁵ x cos ² x sinx dx	5 marks
08.	Compute the truth table for $(p \lor q) \longrightarrow (p \land q)$	5 marks
09.	Find the general solution of the differential equation	
	y'' - 11y' + 30y = 0	1 mark
10.	Show that the function $y = (x + 1) - \frac{1}{3}e^x$ is a solution to the	first order
	initial value problem $\frac{dy}{dx} = y - x$; $y(0) = \frac{2}{3}$	3 marks
11.	The first term of a geometric series is 54 and the common r	atio of the
	series is $\frac{8}{9}$	
	i) Find the sum to infinity of the series ii) Find the second term of the series	
	iii) Show that the series can be written in the form $\frac{2^a}{3^b}$, where	e a and b are
	integers.	
	(2, 7)	4 marks
12.	If the matrix $A = \begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}$	
	a) Calculate the matrix B which is an inverse of A.	
	b) The product of A and B.	4 marks
	Calculate $\int x^2 e^{x^3} dx$	3 marks

14. Given f(x) = x - 5; $g(x) = x^2$ and $k(x) = \sqrt{x + 2}$

a. Find (gof)(x) and write its domain in interval notation.

b. Find (kof)(x)and write its domain in interval notation. **4 marks**

15. Solve for x the equation $(2^x)^x + 3x = \frac{1}{4}$ **3 marks**

16. Given $\vec{V} = 3\vec{i} + 5\vec{j}$,

find:

i) ||v||

ii) θ where $0 \le \theta \le 360^{\circ}$ Round off θ to the nearest tenth of the degree. **3 marks**

Section II. Choose and answer any three (3) questions 45 marks

17. Given the function $f(x) = \frac{x-4}{x+3}$

- **a.** Determine the domain of definition;
- **b.** Find the intercept point with axes;
- c. Periodicity;
- **d.** Find the asymptotes to the curve;
- e. Compute the first derivative and study its sign;
- f. Compute the second derivative and study its sign;
- **g.** Sketch the graph of f(x)

15 marks

18. Solve the following series of questions

15 marks

a. Consider the plane with the direction vectors $\vec{a} = [8, -5, 4]$ and

 $\vec{b} = [1, -3, -2]$ through Po (3, 7, 0).

- i) Write the vector and parametric equation of the plane.
- **ii)** Determine if the point Q (-10, 8,-6) is on the plane.

b. Consider the plane that has normal vector

 \vec{n} = (3,-2, 5) and contains the points Po (1, 2,-3)

i) Write the scalar equation of the plane.

ii) Is the vector $\vec{a} = (4, 1, -2)$ parallel to the plane?

c. A circle with centre C has an equation $x^2 + y^2 - 10x + 12y + 41=0$ The point B (3,-2) lies on the circle

(1) Express the equation of the circle in the form

$$(x-a)^2 + (y-b)^2 = k$$

(2) Write down the coordinates of C

- **19.** An ellipse E has equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$
 - a) Sketch the ellipse E, showing the values of the intercepts on the coordinate axes.
 - **b)** Given that the line with equation y = x + t intersects the ellipse Eat two distinct points, show that -5 < t < 5.
 - c) The ellipse E is translated by the vector $\begin{vmatrix} a \\ b \end{vmatrix}$ to form another ellipse whose equation is $9x^2 + 16y^2 + 18x 64y = d$. Find the values of the constants a, b and d.
 - d) Hence find an equation for each of the two tangents to the ellipse $9x^2+1616y^2+18x-64y=d$ that are parallel to the line y=x
- 20. Find solutions to the following series of questions 15 marksa. An arithmetic series the first term a and common difference d the sum

of the first five terms of the series is 575

(1) Show that a + 2d = 115

- (2) Given also that the 10th term of the series is 87, find the value of d.
- (3) The n^{th} term of the series is u_n
 - Given that $u_k > 0$ and $u_k + 1 < 0$, Find $\sum_{n=1}^k u_n$

b. Calculate the $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$

21. Find solutions to the following series of questions

15 marks

15 marks

a. Consider the plane with direction vectors $\vec{a} = [8, -5, 4]$ and $\vec{b} =$

[1, -3, -2] through $P_0(3,7,0)$

- i) Write the vector equation of the plane.
- ii) Write the parametric equation of the plane.
- iii) Determine if the point M (-10, 8, -6) is on the plane.
- iv) Find x-intercept of the plane.

b. Use Cramer's Rule to solve the following system:

2x + 5y - z = 4x - 3y + 2z = 33x - 2y + z = 8