CSC\&CSM - Mathematics A
T039
Wednesday, 22/11/2017 08:30-11:30 AM

WORKFORCE DEVELOPMENT AUTHORITY

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2017, TECHNICAL AND PROFESSIONAL STUDIES

EXAM TITLE: MATHEMATICS A
OPTIONS: Computer Science (CSC)
Computer Science and Management (CSM)
DURATION: 3 hours

INSTRUCTIONS:

The paper is composed of the following Sections:
Section I: Sixteen (16) compulsory questions.
Section II: Attempt any three (3) out of five questions. 45 marks

Note:

Every candidate is required to carefully comply with the above instructions. Penalty measures will be applied on their strict consideration.

1. If $\vec{a}=7 \vec{\imath}+8 \vec{\jmath}$ and $\vec{c}=5 \vec{\imath}-2 \vec{\jmath}$

Find the scalar product $\vec{a} \cdot \vec{c}$
2 marks
02. Solve $2 \log _{b}(x)=\log _{b}(4)+\log _{b}(x-1)$.

3 marks
03. Find the distance between parallel planes:
$10 \mathrm{X}-12 \mathrm{Y}+5 \mathrm{Z}-8=0$ and $10 \mathrm{X}-12 \mathrm{Y}=5 \mathrm{Z}+4$
$Q(1,1,2)$ is a point in the first plane.
2 marks
04. Find the complex number z such that $5 i z+\bar{z}+16=8 i$

Give your answer in the form $a+b i$, where a and b are real numbers.
5 marks
05. Find the equation of the plane containing the three points $(1,2,3),(2,0,4)$ and $(3,3,1),(2,0,4)$ and $(3,3,1)$

3 marks
06. Use de Moivre's theorem to show that
$\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$
5 marks
07. Find $\int \sin ^{5} x \cos ^{2} x \sin x d x$

5 marks
08. Compute the truth table for $(p \vee q) \longrightarrow(p \wedge q)$

5 marks
09. Find the general solution of the differential equation
$y^{\prime \prime}-11 y^{\prime}+30 y=0$
1 mark
10. Show that the function $y=(x+1)-\frac{1}{3} e^{x}$ is a solution to the first order initial value problem $\frac{d y}{d x}=y-x ; y(0)=\frac{2}{3}$

3 marks
11. The first term of a geometric series is 54 and the common ratio of the series is $\frac{8}{9}$
i) Find the sum to infinity of the series
ii) Find the second term of the series
iii) Show that the series can be written in the form $\frac{2^{a}}{3^{b}}$, where a and b are integers.

4 marks
12. If the matrix $A=\left(\begin{array}{ll}2 & 7 \\ 1 & 4\end{array}\right)$
a) Calculate the matrix B which is an inverse of A.
b) The product of A and B.

4 marks
13. Calculate $\int x^{2} e^{x^{3}} d x$
14. Given $\mathrm{f}(\mathrm{x})=\mathrm{x}-5 ; \mathrm{g}(\mathrm{x})=x^{2}$ and $\mathrm{k}(\mathrm{x})=\sqrt{x+2}$
a. Find (gof) (x) and write its domain in interval notation.
b. Find (kof)(x) and write its domain in interval notation.

4 marks
15. Solve for x the equation $\left(2^{x}\right)^{x}+3 x=\frac{1}{4} \quad 3$ marks
16. Given $\vec{V}=3 \vec{\imath}+5 \vec{\jmath}$,
find:
i) $\|v\|$
ii) θ where $0 \leq \theta \leq 360^{\circ}$

Round off θ to the nearest tenth of the degree.
3 marks

Section II. Choose and answer any three (3) questions
45 marks
17. Given the function $\mathrm{f}(\mathrm{x})=\frac{x-4}{x+3}$
a. Determine the domain of definition;
b. Find the intercept point with axes;
c. Periodicity;
d. Find the asymptotes to the curve;
e. Compute the first derivative and study its sign;
f. Compute the second derivative and study its sign;
g. Sketch the graph of $f(x)$

15 marks

18. Solve the following series of questions

15 marks
a. Consider the plane with the direction vectors $\vec{a}=[8,-5,4]$ and $\vec{b}=[1,-3,-2]$ through $\operatorname{Po}(3,7,0)$.
i) Write the vector and parametric equation of the plane.
ii) Determine if the point $Q(-10,8,-6)$ is on the plane.
b. Consider the plane that has normal vector $\vec{n}=(3,-2,5)$ and contains the points $\operatorname{Po}(1,2,-3)$
i) Write the scalar equation of the plane.
ii) Is the vector $\vec{a}=(4,1,-2)$ parallel to the plane?
c. A circle with centre C has an equation $x^{2}+y^{2}-10 x+12 y+41=0$ The point $B(3,-2)$ lies on the circle
(1) Express the equation of the circle in the form

$$
(x-a)^{2}+(y-b)^{2}=k
$$

(2) Write down the coordinates of C
19. An ellipse E has equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
a) Sketch the ellipse E, showing the values of the intercepts on the coordinate axes.
b) Given that the line with equation $y=x+t$ intersects the ellipse Eat two distinct points, show that $-5<\mathrm{t}<5$.
c) The ellipse E is translated by the vector $\left|\begin{array}{l}a \\ b\end{array}\right|$ to form another ellipse whose equation is $9 x^{2}+16 y^{2}+18 x-64 y=d$. Find the values of the constants a, b and d .
d) Hence find an equation for each of the two tangents to the ellipse $9 x^{2}+1616 y^{2}+18 x-64 y=d$ that are parallel to the line $y=x$
20. Find solutions to the following series of questions 15 marks
a. An arithmetic series the first term a and common difference d the sum of the first five terms of the series is 575
(1) Show that $\mathrm{a}+2 \mathrm{~d}=115$
(2) Given also that the $10^{\text {th }}$ term of the series is 87 , find the value of d.
(3) The $n^{\text {th }}$ term of the series is u_{n}

Given that $u_{k}>0$ and $u_{k}+1<0, \quad$ Find $\sum_{n=1}^{k} u_{n}$
b. Calculate the $\lim _{x \rightarrow 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$
21. Find solutions to the following series of questions

15 marks
a. Consider the plane with direction vectors $\vec{a}=[8,-5,4]$ and $\vec{b}=$ $[1,-3,-2]$ through $P_{0}(3,7,0)$
i) Write the vector equation of the plane.
ii) Write the parametric equation of the plane.
iii) Determine if the point $M(-10,8,-6)$ is on the plane.
iv) Find x-intercept of the plane.
b. Use Cramer's Rule to solve the following system:

$$
\begin{aligned}
& 2 x+5 y-z=4 \\
& x-3 y+2 z=3 \\
& 3 x-2 y+z=8
\end{aligned}
$$

